Equivariant K-theory of Affine Flag Manifolds and Affine Grothendieck Polynomials

نویسندگان

  • MASAKI KASHIWARA
  • MARK SHIMOZONO
چکیده

We study the equivariant K-group of the affine flag manifold with respect to the Borel group action. We prove that the structure sheaf of the (infinite-dimensional) Schubert variety in the K-group is represented by a unique polynomial, which we call the affine Grothendieck polynomial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theory Schubert calculus of the affine Grassmannian

We construct the Schubert basis of the torus-equivariant K-homology of the affine Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson in equivariant homology. For the case where G= SLn, the K-homology of the affine Grassmannian is identified with a sub-Hopf algebra of the ring of sym...

متن کامل

Combinatorics of the K-theory of Affine Grassmannians

We introduce a family of tableaux that simultaneously generalizes the tableaux used to characterize Grothendieck polynomials and k-Schur functions. We prove that the polynomials drawn from these tableaux are the affine Grothendieck polynomials and k-K-Schur functions – Schubert representatives for the K-theory of affine Grassmannians and their dual in the nil Hecke ring. We prove a number of co...

متن کامل

Equivariant Coherent Sheaves , Soergel Bimnodules , and Categorification of Affine Hecke Algebras

In this thesis, we examine three different versions of "categorification" of the affine Hecke algebra and its periodic module: the first is by equivariant coherent sheaves on the Grothendieck resolution (and related objects), the second is by certain classes on bimodules over polynomial rings, called Soergel bimodules, and the third is by certain categories of constructible sheaves on the affin...

متن کامل

Instanton Counting via Affine Lie Algebras I: Equivariant J-functions of (affine) Flag Manifolds and Whittaker Vectors

Let g be a simple complex Lie algebra, G the corresponding simply connected group; let also gaff be the corresponding untwisted affine Lie algebra. For a parabolic subgroup P ⊂ G we introduce a generating function Z G,P which roughly speaking counts framed G-bundles on P endowed with a P -structure on the horizontal line (the formal definition uses the corresponding Uhlenbeck type compactificat...

متن کامل

On GKM Description of the Equivariant Cohomology of Affine Flag Varieties and Affine Springer Fibers

For a projective variety endowed with a torus action, the equivariant cohomology is determined by the fixed points of codimension 1 subtori. Especially, when the fixed points of the torus are finite and fixed varieties under the action of codimension 1 subtori have dimension less than or equal to 2, equivariant cohomology can be described by discrete conditions on the pair of fixed points via G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008